翻訳と辞書 |
ExoCube (CP-10) : ウィキペディア英語版 | ExoCube (CP-10)
ExoCube (CP-10) is a space weather satellite developed by the California Polytechnic State University – San Luis Obispo and sponsored by the National Science Foundation. It is one of many miniaturized satellites that adhere to the CubeSat standard. ExoCube's primary mission is to measure the density of hydrogen, oxygen, helium, and nitrogen in the Earth’s exosphere. It is characterizing (), (), (), (), (), (), (), (), as well as the total ion density above ground stations, incoherent scatter radar (ISR) stations, and periodically throughout the entire orbit. It was launched aboard a Delta II rocket with the NASA SMAP primary payload from Vandenberg AFB in California on January 31, 2015.〔(ExoCube launch )〕 ==Design==
ExoCube is a 3-U CubeSat satellite (30 x 10 x 10 cm). ExoCube was be deployed from a P-POD (Poly-Picosatellite Orbital Deployer), a universal CubeSat deployment system. The satellite is equipped with an Environmental Chamber for the scientific payload and an Attitude Determination Control System (ADCS). The satellite’s Environmental Chamber is the housing for the two scientific instruments, a miniaturized mass spectrometer, and an ion sensor. The chamber secures the instruments and provides the necessary conditions for accurate data acquisition. It also serves to keep moisture away from the instrument pre-launch. The chamber is purged with sulfur hexafluoride while awaiting the launch date for the instrument’s protection. ExoCube is also equipped with an attitude control system that allows for instrumental positioning and satellite stability. For control, ExoCube is fitted with two deployable booms with brass masses located at their ends. This allows for gravity-gradient stabilization that helps align the satellite into the proper orientation in two axes within ±10°. Further fine-tuning of the satellite’s orientation is performed by magnetorquers. These devices utilize generated magnetic fields from a current, which interact with the Earth’s magnetic field to orientate the satellite. This will allow the satellite’s scientific payload to take proper measurements. The satellite also has a 10-mNm momentum wheel from Sinclair Interplanetary that provides roll and yaw axes coupling for gyroscopic stability. For determination, ExoCube is equipped with magnetometers and sun sensors on each of its faces, as well as on the deployable booms.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「ExoCube (CP-10)」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|